direct product, non-abelian, supersoluble, monomial
Aliases: C22×He3⋊C2, C62⋊7S3, He3⋊3C23, (C3×C6)⋊3D6, (C2×He3)⋊3C22, (C22×He3)⋊5C2, C32⋊3(C22×S3), C6.21(C2×C3⋊S3), C3.2(C22×C3⋊S3), (C2×C6).10(C3⋊S3), SmallGroup(216,113)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — He3 — He3⋊C2 — C2×He3⋊C2 — C22×He3⋊C2 |
He3 — C22×He3⋊C2 |
Generators and relations for C22×He3⋊C2
G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ece-1=cd-1, fcf=c-1, de=ed, df=fd, fef=e-1 >
Subgroups: 568 in 176 conjugacy classes, 46 normal (7 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, C6, C6, C23, C32, D6, C2×C6, C2×C6, C3×S3, C3×C6, C22×S3, C22×C6, He3, S3×C6, C62, He3⋊C2, C2×He3, S3×C2×C6, C2×He3⋊C2, C22×He3, C22×He3⋊C2
Quotients: C1, C2, C22, S3, C23, D6, C3⋊S3, C22×S3, C2×C3⋊S3, He3⋊C2, C22×C3⋊S3, C2×He3⋊C2, C22×He3⋊C2
(1 34)(2 35)(3 36)(4 12)(5 10)(6 11)(7 15)(8 13)(9 14)(16 25)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)
(1 16)(2 17)(3 18)(4 30)(5 28)(6 29)(7 33)(8 31)(9 32)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(25 34)(26 35)(27 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 14 10)(2 15 11)(3 13 12)(4 36 8)(5 34 9)(6 35 7)(16 23 19)(17 24 20)(18 22 21)(25 32 28)(26 33 29)(27 31 30)
(2 15 11)(3 12 13)(4 8 36)(6 35 7)(17 24 20)(18 21 22)(26 33 29)(27 30 31)
(1 34)(2 36)(3 35)(4 11)(5 10)(6 12)(7 13)(8 15)(9 14)(16 25)(17 27)(18 26)(19 28)(20 30)(21 29)(22 33)(23 32)(24 31)
G:=sub<Sym(36)| (1,34)(2,35)(3,36)(4,12)(5,10)(6,11)(7,15)(8,13)(9,14)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33), (1,16)(2,17)(3,18)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,14,10)(2,15,11)(3,13,12)(4,36,8)(5,34,9)(6,35,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30), (2,15,11)(3,12,13)(4,8,36)(6,35,7)(17,24,20)(18,21,22)(26,33,29)(27,30,31), (1,34)(2,36)(3,35)(4,11)(5,10)(6,12)(7,13)(8,15)(9,14)(16,25)(17,27)(18,26)(19,28)(20,30)(21,29)(22,33)(23,32)(24,31)>;
G:=Group( (1,34)(2,35)(3,36)(4,12)(5,10)(6,11)(7,15)(8,13)(9,14)(16,25)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,33), (1,16)(2,17)(3,18)(4,30)(5,28)(6,29)(7,33)(8,31)(9,32)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(25,34)(26,35)(27,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,14,10)(2,15,11)(3,13,12)(4,36,8)(5,34,9)(6,35,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30), (2,15,11)(3,12,13)(4,8,36)(6,35,7)(17,24,20)(18,21,22)(26,33,29)(27,30,31), (1,34)(2,36)(3,35)(4,11)(5,10)(6,12)(7,13)(8,15)(9,14)(16,25)(17,27)(18,26)(19,28)(20,30)(21,29)(22,33)(23,32)(24,31) );
G=PermutationGroup([[(1,34),(2,35),(3,36),(4,12),(5,10),(6,11),(7,15),(8,13),(9,14),(16,25),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,33)], [(1,16),(2,17),(3,18),(4,30),(5,28),(6,29),(7,33),(8,31),(9,32),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(25,34),(26,35),(27,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,14,10),(2,15,11),(3,13,12),(4,36,8),(5,34,9),(6,35,7),(16,23,19),(17,24,20),(18,22,21),(25,32,28),(26,33,29),(27,31,30)], [(2,15,11),(3,12,13),(4,8,36),(6,35,7),(17,24,20),(18,21,22),(26,33,29),(27,30,31)], [(1,34),(2,36),(3,35),(4,11),(5,10),(6,12),(7,13),(8,15),(9,14),(16,25),(17,27),(18,26),(19,28),(20,30),(21,29),(22,33),(23,32),(24,31)]])
C22×He3⋊C2 is a maximal subgroup of
C62.5D6 C62.31D6 C22⋊(He3⋊C4) C62⋊2D6
C22×He3⋊C2 is a maximal quotient of C62.47D6 C62.16D6 He3⋊5D4⋊C2
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 3F | 6A | ··· | 6F | 6G | ··· | 6R | 6S | ··· | 6Z |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 1 | 1 | 6 | 6 | 6 | 6 | 1 | ··· | 1 | 6 | ··· | 6 | 9 | ··· | 9 |
40 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 3 | 3 |
type | + | + | + | + | + | ||
image | C1 | C2 | C2 | S3 | D6 | He3⋊C2 | C2×He3⋊C2 |
kernel | C22×He3⋊C2 | C2×He3⋊C2 | C22×He3 | C62 | C3×C6 | C22 | C2 |
# reps | 1 | 6 | 1 | 4 | 12 | 4 | 12 |
Matrix representation of C22×He3⋊C2 ►in GL5(𝔽7)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 6 | 0 |
0 | 0 | 0 | 0 | 6 |
6 | 0 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 6 | 6 | 1 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 2 |
6 | 6 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 6 | 2 | 2 |
1 | 0 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 |
0 | 0 | 1 | 1 | 6 |
0 | 0 | 0 | 0 | 6 |
G:=sub<GL(5,GF(7))| [1,0,0,0,0,0,1,0,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,6],[6,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,6,0,0,0,1,6,0,0,0,0,0,0,6,0,0,0,1,6,0,0,0,0,1,1],[1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2],[6,1,0,0,0,6,0,0,0,0,0,0,1,0,6,0,0,0,4,2,0,0,0,0,2],[1,6,0,0,0,0,6,0,0,0,0,0,6,1,0,0,0,0,1,0,0,0,0,6,6] >;
C22×He3⋊C2 in GAP, Magma, Sage, TeX
C_2^2\times {\rm He}_3\rtimes C_2
% in TeX
G:=Group("C2^2xHe3:C2");
// GroupNames label
G:=SmallGroup(216,113);
// by ID
G=gap.SmallGroup(216,113);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-3,-3,387,1444,382]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,e*c*e^-1=c*d^-1,f*c*f=c^-1,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations